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Propagation Characteristics of Dielectric-
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Abstract —A generat technique is presented for calculating the propa-

gation characteristics of a waveguide with arbitrary cross-sectional shape

loaded with a circular dielectric rod. The waveguide fields, which are

represented as a sum of functions satisfying the homogeneous Helmholtz

equation and the boundary conditions at the rod surface, are point-matched

at the surface of the waveguide. Numerical examples of a rod centered in a

square guide and off center in a circular guide are given, and results for a

rod centered in a rectangular cavity are compared with measured data.

I. INTRODUCTION

T HE NEED FOR accurate analyses of waveguides and

cavities loaded with dielectric materials is prompted

by such diverse applications as the microwave excitation of

plasma discharges [1], the measurement of the dielectric

properties of materials [2], [3], the modeling of dielectric

resonators [4], [5] and millimeter-wave integrated circuit

transmission lines [6], [7], and the processing of materials

using microwave energy, particularly food [8].

This paper presents a method for calculating the propa-

gation characteristics of a waveguide of arbitrary cross

section loaded with a circular dielectric rod. Numerical

calculations are based on the point-matching technique,

which has been applied successfully to both hollow pipe [9]

and dielectric fiber [10], [11] waveguides. Results are given

for the dispersion properties of modes in a square guide

with a centered dielectric rod, and for the resonant fre-

quencies of a circular cylindrical cavity loaded by an

off-center rod. Also, the resonant frequencies of a rectan-

gular cavity with a centered rod are compared with mea-

sured values.

II. FORMULATION OF THE BOUNDARY VALUE PROBLEM

A circular dielectric rod of radius a, permittivity 61, and

permeability PI is embedded in a second medium of

permittivity c* and permeability p ~, and surrounded by a

perfectly conducting sheath, as shown in Fig. 1. Both the

rod and the sheath are assumed to be invariant along the

waveguiding axis. For simplicity, the waveguide is taken to

be symmetric about the x axis, with the axis representing

either a magnetic wall (axial electric field even about x) or

an electric wall (axial electric field odd about x). General-

ization to the arbitrary asymmetric case is straightforward

[11].
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Fig. 1. Geometry of dielectric-rod-loaded waveguide. Cross-sectional
shape is general, with symmetry assumed about the x axis.

Since guided wave solutions for the fields in the wave-

guide are desired, let

where @is the transverse position vector and ~ is the axial

phase constant. The axial modal fields must satisfy the

homogeneous Hehnholtz equation

(2)

in each region of the waveguide, where Vf is the transverse

Laplacian and k 2 = o’pt. A separation of variables solu-

tion to (2) in cylindrical coordinates results in

( }[ez(iO =
hz(~)

C#I&(krr) + C2B&(kr~)]

x[c3cos(k+@) +C~sin(k~@)] (3)

where Bj~) and Bf~) are appropriate first- and second-kind

solutions to Bessel’s equation, and k; = k 2 – ~ 2. The peri-

odic nature of the fields in each region requires that k+ be

an integer. Thus, satisfactory solutions for the axial fields
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in each region are given by
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where
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(4)

(5)

(6)

(7)
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Here J. and Y. are Bessel functions of the first and the

second kind, respectively, and I. and K. are modified

Bessel functions of the first and the second kind. Note that

for even modes the terms in (4) involving GO are excluded,

while for odd modes the terms involving F. are excluded.

The transverse fields in each region can be calculated

[12] via

The boundary conditions on the tangential components of

the electric and magnetic fields require the continuity of

e e+, h,, and lZ@ at r = a. Substituting (4) into (11),

e~~orcing these boundary conditions, and e~ploying the

orthogonality of the sinusoids allows the amplitude coeffi-

cients a., b., c., and e. to be written in terms of dn and

fn. The axial and transverse components of the electric

field in region II can then be written in terms of normal-

(13)

+(k2a)(~a)q2Q3.@J(~r)1
+fn

[~(Ba)Q2.@.(~r)

1}
+(k2a)(~a)q2{~(~r) G.(o) (14)

where

2.=+ fn=& (15)
n

(
on= :n eve n modes

–n odcl modes
(16)

{
~= !! (17)

c

and the quantities 17~, {~, and R,, and the Q, terms are

given in the Appendix. Here a prime (’) indicates differ-

entiation of Bessel functions with respect to their argu-

ments.

Application of the remaining boundary conditions at the

conducting sheath determines the propagation characteris-

tics of the guide. Here the requirement is that the tangen-

tial electric fields be zero, or

eZ2 = O

et’ = er’sin(~)+ %2cos(~) = o (18)

for all points on the sheath. The quantity a describes the

angle between the radial line and the normal vector at a

point on the sheath, as shown in Fig. 1. Note that the

eigenvalue equation for the modes of a circular waveguide

of radius b with a centered dielectric rod is easily re-

covered by forcing eZ2= eq2 = O at r = b.

Application of the boundary conditions (18) can be

made tractable by truncating the infinite series in (4) to N

terms and matching (18) at N discrete points on the sheath

boundary. The result is a homogeneous system of 2N

linear equations in the 2N unknown amplitude coefficients
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~. and f., a solution to which is guaranteed only if the

determinant of the matrix of coefficients is zero. With u

fixed, this occurs only at certain values of /3, which are

subsequently taken to be the phase constants of the guide.

III. CONDITIONS AT CUTOFF

The behavior of the rod-loaded guide at cutoff (~= O) is

particularly interesting in that it helps classify the mode

types away from cutoff. With /3 = O, the boundary condi-

tions (18) reduce to

n=o

where

(21)

with the Pn functions given in the Appendix.

It is seen that the expansion coefficients ~. and ~ are

no longer coupled by the boundary conditions, and thus it,.
is expected that modes exist which satisfy either (19) or

(20) independently. Reference to the original field expan-

sions (4) reveals that the boundary condition (19) can be,,
obtained with hzl = h:2 = O whale (20) can be obtained

with e,l = e:z = O. Thus, solutions for the cutoff frequency

arising from (19) represent modes purely TM to z at

cutoff, while solutions obtained using (20) represent modes

purely TE to z at cutoff. From this, the nomenclature used

to describe hybrid modes away from cutoff is taken to be

“HE” if the mode is TE at cutoff and “ EH” if the mode is

TM at cutoff. It is found that these modes revert to the TE

and TM modes of the homogeneously loaded waveguide

when c1 j c~, or a * O. Also anticipated are modes which

are hybrid TE/TM even at cutoff. These modes require

(19) and (20) to hold simultaneously and do not corre-

spond directly to modes of the homogeneously filled guide.

IV. NUMERICAL EXAMPLES

As a first example, a square waveguide with a centered

dielectric rod is considered. The guide geometry is shown

in Fig. 2(a). Fig. 3 shows the cutoff frequencies plotted

versus rod radius. The subscript on the mode designation

corresponds to the empty waveguide TE or TM mode to

which the modes revert at zero rod radius, the first six of

which are shown. Since the guide exhibits fourfold symme-

try, the first superscript indicates whether the axial field is

either even or odd about the x axis, while the second

superscript indicates whether even or odd harmonics are

used in the axial electric field expansion in (4). With the

symmetry states properly identified, point matching on the

boundary is required only in the first quadrant. Those

modes with eightfold symmetry (e.g. HE;: ) requir? match-

ing only in the first o,ctant.

&’4
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Fig. 2. Geometry of (a) square waveguide with rod on axis and (b)
circular waveguide with rod off axis.
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Fig. 3. Cutoff frequencies of square guide with centered dielectric rod
versus rod radius for C,l = 10, Crz= L

It is seen that as the rod radius is increased, the cutoff

frequencies decrease at various rates, with the degenerate

modes of the empty guide splitting into modes with dis-

tinct separate cutoff frequencies. For a/A >0.09, the EHf~

mode becomes the dominant mode of the guide. A first-

order perturbation solution for the cutoff frequency of the

HE:( mode [13] is indicated by the dotted line. This

solution is seen to become quite inaccurate when a/A >

0.2. Figs. 4 and 5 show the axial field distributions in the

guide at cutoff for the EH:: and HE:; modes, respec-

tively, constructed from (4). As the permittivity of the rod

is increased, the fields are perturbed away from the

sinusoidal distributions of the empty guide.

Also displayed in Fig. 3 is a mode with the designation

R:”. This mode is the first encountered which is hybrid

TE–TM at cutoff, and does not revert to an empty wave-

guide mode as the rod radius is reduced to zero. It is

termed a rod mode since the cutoff characteristics of the
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Fig. 4. Axial electric field distributions for EHf~ mode at cutoff in
square waveguide with centered dielectric rod, for y/a = 0.5, C,2=1,
A/u=4.
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Fig. 5. Axial magnetic field distributions for HE~{ mode at cutoff in
square waveguide with centered ‘dielectric rod versus y/a with x/a =
0.5 and versus x/a with y/a = 0.5, for C,z =1, A/a= 4.

guide are dependent only on the properties of the rod.

That is, the cutoff wavenumber of the guide normalized to

the rod radius is found to remain constant at kCa = 1.46

regardless of xl/a, the size of the guide relative to the

radius of the rod.

The rod mode is also interesting in that it displays

backward-wave behavior. This is readily seen in Fig. 6,

which shows the dispersion characteristics of the rod-loaded

square waveguide. Whereas most of the modes demon-

strate the positive dispersion typical of axially invariant

waveguides, the rod mode “has a region where the slope of

the dispersion cume is negative, indicating that the direc-

10.0

1

fast .,,. Iq, on I SI.wuyflv:p,m
w/u > c

/

/

/ “/1! = c +“”1

Normal ,md phase mnstant I$A

Fig. 6. Dispersion characteristics of square waveguide with centered
dielectric rod for <,1=10, cr2 =1, A/a= 5.
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Fig. 7. Number of points in first octant of square waveguide with
centered dielectric rod required to calculate cutoff frequency to 1
percent accuracy, versus rod radius, for C,l = 10, Crz= 1.

tion of energy propagation is opposite the direction of

phase front propagation. This type of behavior has been

previously identified in circular waveguides with axial di-

electric rods [14] and in rectangular waveguides with rect-

angular dielectric rods [15], and hi~s been treated generally

in” [16]. Interestingly, the dispersion characteristics ~f the

rod mode are also independent of A/a. That is, for a

given koa, ~a does not depend on the size of the guide

relative to the’rod radius.

Each of the curves in Figs. 3 and 6 was generated on an

IBM PC microcomputer by solving either (18) or (19) and

(20) using 20 equally spaced rmatched points and 20

harmonics. A measure of the sensitivity of the results to

the number of matching points is shown in Fig. 7. It is
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Fig. 8. Change in cutoff frequency from empty waveguide value for
dielectric rod placed off center in circular waveguide versus off-center
position, for C,l = 10, C,2= 1, b/a= 10.

seen that as the rod radius is increased, it takes more

matching points (and expansion functions) to calculate the

cutoff frequency of the HE;: mode to within a desired

accuracy, while the EH:: mode is relatively insensitive to

the number of points chosen.

As a second example, Fig. 8 shows the change in cutoff

frequency which results when a dielectric rod is placed off

axis in a circular guide, as shown in Fig. 2(b). Again, the

subscript on the mode designation corresponds to the

empty waveguide TE or TM mode to which the modes

revert at zero rod radius. The superscript is used to indi-

cate whether the axial fields are even or odd about the x

axis. Because of the twofold symmetry, point matching is

required only in the upper half of the guide. Calculations

were done using 20 equally spaced points.

For a rod placed in the center of the circular guide, each

of the modal cutoff frequencies is lowered. As the rod is

shifted off axis, most of the modes split into two separate

cases, demonstrating either even or. odd symmetry. Those

modes which are azimuthally symmetric when the rod is

centered do not split. This is sensible, since the field

patterns of these modes are independent of the radial

direction along which the rod is to be moved.
It is interesting to see from Fig. 8 that the cutoff

frequency of the EHf’l mode is highly perturbed as the rod

is moved off axis, while the EH{I mode is quite insensitive

to shifts in the rod position. This suggests that a cylindrical

cavity oscillating in the EH ;I mode might be useful for

monitoring the dielectric constant of a rod placed off axis.

Fig. 9 shows the resonant frequency of a circular cylin-

drical cavity with an off-axis dielectric rod plotted against

the dielectric constant of the rod. It is seen that for

1< C,l <10, the resonant frequency of the EH:II mode

varies in a near linear fashion with C,l. The modes nearest

in resonant frequency to the EH;II mode, including the

0.32 L ~r~,T- -r~m-~r~
1.0 2.0r3~~O% 60 70 8.0 90 10011012.0

Dlelectr, c constant of md ,,1

Fig. 9. Resonant frequency of circular cavity loaded off center by
dielectric rod, for length L = 2 b, /3b = 77\2, versus rod dielectric
constant, for trz =1, b/a =10, d/a =6.
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Fig. 10. Comparison of calculated and measured resonant frequencies
of 1.7 in x 3.4 in x 10.2 in rectangular cavity oscillating in TM310 mode
with centered dielectric sample. Experimental values are from [17].

EH:lI mode, are nearly invariant with changes in C,l, and

provide benchmark frequencies.

V. COMPARISON TO EXPERIMENT

To judge the validity of the technique presented in this

paper, results are compared with measurements made by

Rzepecka [17] of the resonant frequency of a rectangular

cavity loaded by a cylindrical sheath containing liquids of

various permittivities. His cavity is constructed from a 10.2

in section of WR340 waveguide (3.4 in x 1.7 in inner

dimensions) and is operated in the 103 mode TE to the

axis of the waveguide. The cylindrical dielectric sample is
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inserted through a hole in the center of the broad wall, and

extends across the waveguide, perpendicular to its axis.

For the purpose of analysis, the cavity can also be

viewed as oscillating in the 310 mode TM to the axis of the

rod, corresponding to a section of 10.2 in x 3.4 in wave-

guide operating in the TM31 mode at cutoff. The resonant

‘frequency does not depend on the length of the guide

because the transverse electric fields are identically zero at

cutoff (see (13) and (14)).

Fig. 10 shows the TM310 resonant frequency of the

cavity loaded with a dielectric rod of diameter 0.11 in

plotted versus rod permittivity, calculated by solving (19)

with ten matching points along the x axis and three points

along the y axis. Also shown are Rzepecka’s measure-

ments. With the theoretical curve scaled to account for the

presence of the insertion hole and the sample holder,

agreement is seen to be excellent.

VI. CONCLUSIONS

A technique for calculating the propagation characteris-

tics of dielectric-rod-loaded waveguides has been pre-

sented. The technique is numerically simple and comput-

ationally rapid. A typical point on a dispersion curve

calculated using 20 matching points takes 5 seconds on an

IBM PC with a math coprocessor. Numerical results have

been presented which demonstrate the usefulness of the

technique, and the validity of the technique has been

verified by comparison to measured data.

APPENDIX

QIn = ‘2np7n – ‘3np6n

Q2n = p@,. - p,.Pg.
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