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Propagation Characteristics of Dielectric-
Rod-Loaded Waveguides

EDWARD J. ROTHWELL, MEMBER, IEEE, AND LYDELL L. FRASCH, STUDENT MEMBER, IEEE

Abstract —A general technique is presented for calculating the propa-
gation characteristics of a waveguide with arbitrary cross-sectional shape
loaded with a circular dielectric rod. The waveguide fields, which are
represented as a sum of functions satisfying the homogeneous Helmholtz
equation and the boundary conditions at the rod surface, are point-matched
at the surface of the waveguide. Numerical examples of a rod centered in a
square guide and off center in a circular guide are given, and results for a
rod centered in a rectangular cavity are compared with measured data.

I. INTRODUCTION

THE NEED FOR accurate analyses of waveguides and
cavities loaded with dielectric materials is prompted
by such diverse applications as the microwave excitation of
plasma discharges [1], the measurement of the dielectric
properties of materials [2], [3], the modeling of dielectric
resonators [4], [5] and millimeter-wave integrated circuit
transmission lines [6], [7], and the processing of materials
using microwave energy, particularly food [8].

This paper presents a method for calculating the propa-
gation characteristics of a waveguide of arbitrary cross
section loaded with a circular dielectric rod. Numerical
calculations are based on the point-matching technique,
which has been applied successfully to both hollow pipe [9]
and dielectric fiber [10], [11] waveguides. Results are given
for the dispersion properties of modes in a square guide
with a centered dielectric rod, and for the resonant fre-
quencies of a circular cylindrical cavity loaded by an
off-center rod. Also, the resonant frequencies of a rectan-
gular cavity with a centered rod are compared with mea-
sured values.

II. FORMULATION OF THE BOUNDARY VALUE PROBLEM

A circular dielectric rod of radius a, permittivity €,, and
permeability p; is embedded in a second medium of
permittivity €, and permeability p,, and surrounded by a
perfectly conducting sheath, as shown in Fig. 1. Both the
rod and the sheath are assumed to be invariant along the
waveguiding axis. For simplicity, the waveguide is taken to
be symmetric about the x axis, with the axis representing
either a magnetic wall (axial electric field even about x) or
an electric wall (axial electric field odd about x). General-
ization to the arbitrary asymmetric case is straightforward
[11].
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Fig. 1. Geometry of dielectric-rod-loaded waveguide. Cross-sectional

shape is general, with symmetry assumed about the x axis.

Since guided wave solutions for the fields in the wave-
guide are desired, let

E(p,z) =&(p)e  H(p,z) =k(F)e™ (1)

where p is the transverse position vector and 8 is the axial
phase constant. The axial modal fields must satisfy the
homogeneous Helmholtz equation

(V,2+k2){e2(5)} -0

(7) @

in each region of the waveguide, where v, is the transverse
Laplacian and k? = w’ue. A separation of variables solu-
tion to (2) in cylindrical coordinates results in

e.(p) ; )
{ " (’;)} = |C.BY(k,r)+ C,BY (k,r)]

><[C3cos(k¢¢)+C4sin(k¢¢)] (3)

where B,‘:: and B,(i) are appropriate first- and second-kind
solutions to Bessel’s equation, and k2 = k* — 82 The peri-
odic nature of the fields in each region requires that k, be
an integer. Thus, satisfactory solutions for the axial fields
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in each region are given by

en(B)= L anpn(xr) E()

n=0

h,(p) = ; b (xr)G, ()

en(7) = f[ @, (7r) + d,0,(r)] E,(8)

() - i:l[en¢n(7r)+fn®n(")]Gn(¢)

(4)

where
x=(k2)"  r=(k2)"
nie = {700 a0 ©
vl el o
SR S
S et
=[Sm0

Here J, and Y, are Bessel functions of the first and the
second kind, respectively, and I, and K, are modified
Bessel functions of the first and the second kind. Note that
for even modes the terms in (4) involving G, are excluded,
while for odd modes the terms involving F; are excluded.

The transverse fields in each region can be calculated

[12] via
—j,B [ de. dh,
“Te-p| w5 }
—JB |1 de, [wn\dh,
g _7%‘(7{) ]
L -8 | (k2 )ae 8hz]
’ k2—,32_ wufr ar
_ 2
h¢=‘k‘z_jl;2 (wiﬁ)ZiZJr%%} ()

The boundary conditions on the tangential components of
the electric and magnetic fields require the continuity of
e,, e, h, and hy at r=a. Substituting (4) into (11),
enforcing these boundary conditions, and employing the
orthogonality of the sinusoids allows the amplitude coeffi-
cients a,, b,, ¢,, and e, to be written in terms of 4, and
f,- The axial and transverse components of the electric
field in region II can then be written in terms of normal-

595

ized quantities as

- ¥ (40 [ (B (1)

= -J
€= Z

n=o (k r2a)

T () 03,8, ()|

= (o) tz(er)

+ﬁ,[(ﬁa)(m)®,:(w)
(13)

+—r~;’—’;(k2a)n2§n(”)]}Fn(‘b)
epm Y —

oo (k,ya)? { [
 (ky0) () 05,8

+ fn r;—na(ﬁa)Qan)n(Tr)

+(kza)(m)nzf,i(Tr)]}Gn(M (14)

where
__d, .
d =-= —n
n R n Rn (15)
[ +n even modes
B { odd modes (16)

=yt an
€

and the quantities I',, {,, and R, and the Q, terms are
given in the Appendix. Here a prime (') indicates differ-
entiation of Bessel functions with respect to their argu-
ments.

Application of the remaining boundary conditions at the
conducting sheath determines the propagation characteris-
tics of the guide. Here the requirement is that the tangen-
tial electric fields be zero, or

e,,=0
(18)
for all points on the sheath. The quantity a describes the
angle between the radial line and the normal vector at a
point on the sheath, as shown in Fig. 1. Note that the
eigenvalue equation for the modes of a circular waveguide
of radius b with a centered dielectric rod is easily re-
covered by forcing e, =e,, =0 at r=0.

Application of the boundary conditions (18) can be
made tractable by truncating the infinite series in (4) to N
terms and matching (18) at N discrete points on the sheath

boundary. The result is a homogeneous system of 2N
linear equations in the 2 N unknown amplitude coefficients

ep=e,sin(a)+e,,cos(a)=0
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d, and f,, a solution to which is guaranteed only if the
determinant of the matrix of coefficients is zero. With w
fixed, this occurs only al certain values of B, which are
subsequently taken to be the phase constants of the guide.

III. ConpitioNs AT CUTOFF

The behavior of the rod-loaded guide at cutoff (8 = 0) is
particularly interesting in that it helps classify the mode
types away from cutoff. With 8 =0, the boundary condi-
tions (18) reduce to

S 4, [Pt (sr) = Poy ()] Ey(8) =0 (19)
0

n=

L {7 Pata(o) = Pod ()] () sin(o)

~ (1) [Py, ()= Py 3 (1) G, (9)c03(a) =0 (20)

where
Jn=P3nd_n f;:PSnfn

with the P, functions given in the Appendix.

It is seen that the expansion coefficients d, and f, are
no longer coupled by the boundary conditions, and thus it
is expected that modes exist which satisfy either (19) or
(20) independently. Reference to the original field expan-
sions (4) reveals that the boundary condition (19) can be
obtained with % =h_,=0 while (20) can be obtained
with e, = e, = 0. Thus, solutions for the cutoff frequency
arising from (19) represent modes purely TM to z at
cutoff, while solutions obtained using (20) represent modes
purely TE to z at cutoff. From this, the nomenclature used
to describe hybrid modes away from cutoff is taken to be
“HE” if the mode is TE at cutoff and “EH” if the mode is
TM at cutoff. It is found that these modes revert to the TE
and TM modes of the homogeneously loaded waveguide
when ¢, = €,, or @ = 0. Also anticipated are modes which
are hybrid TE/TM even at cutoff. These modes require
(19) and (20) to hold simultaneously and do not corre-
spond directly to modes of the homogeneously filled guide.

(21)

IV. NUMERICAL EXAMPLES

As a first example, a square waveguide with a centered
dielectric rod is considered. The guide geometry is shown
in Fig. 2(a). Fig. 3 shows the cutoff frequencies plotted
versus rod radius. The subscript on the mode designation
corresponds to the empty waveguide TE or TM mode to
which the modes revert at zero rod radius, the first six of
which are shown. Since the guide exhibits fourfold symme-
try, the first superscript indicates whether the axial field is
either even or odd about the x axis, while the second
superscript indicates whether even or odd harmonics are
used in the axial electric field expansion in (4). With the
symmetry states properly identified, point matching on the
boundary is required only in the first quadrant. Those
modes with eightfold symmetry (e.g. HE{{) require match-
ing only in the first octant.

(2) b

Fig. 2. Geometry of (a) square waveguide with rod on axis and (b)
circular waveguide with rod off axis.
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Fig. 3. Cutoff frequencies of square guide with centered dielectric rod

versus rod radius for €,; =10, €,, =1.

It is seen that as the rod radius is increased, the cutoff
frequencies decrease at various rates, with the degenerate
modes of the empty guide splitting into modes with dis-
tinct separate cutoff frequencies. For a /4 > 0.09, the EH{Y
mode becomes the dominant mode of the guide. A first-
order perturbation solution for the cutoff frequency of the
HE{’S mode [13] is indicated by the dotted line. This
solution is seen to become quite inaccurate when a /A4 >
0.2. Figs. 4 and 5 show the axial field distributions in the
guide at cutoff for the EHi] and HEJ§ modes, respec-
tively, constructed from (4). As the permittivity of the rod
is increased, the fields are perturbed away from the
sinusoidal distributions of the empty guide.

Also displayed in Fig. 3 is a mode with the designation
R{°. This mode is the first encountered which is hybrid
TE-TM at cutoff, and does not revert to an empty wave-
guide mode as the rod radius is reduced to zero. It is
termed a rod mode since the cutoff characteristics of the
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Fig. 4. Axial electric field distributions for EH{f mode at cutoff in
square waveguide with centered dielectric rod, for y/a=05, €,=1,
Aja=4.
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Fig. 5. Axial magnetic field distributions for HE{§ mode at cutoff in
square waveguide with centered dielectric rod versus y/a with x/a =
0.5 and versus x/a with y/a=05, for ¢,, =1, A/a=4.

guide are dependent only on the properties of the rod.
That is, the cutoff wavenumber of the guide normalized to
the rod radius is found to remain constant at k.a=1.46
regardless of A/a, the size of the guide relauve to the
radius of the rod.

The rod mode is also interesting in that it displays
backward-wave behavior. This is readily seen in Fig. 6,
which shows the dispersion characteristics of the rod-loaded
square waveguide. Whereas most of the modes demon-
strate the positive dispersion typical of axially invariant
waveguides, the rod mode has a region where the slope of
the dispersion curve is negative, indicating that the direc-
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percent accuracy, versus rod radius, for €, =10, €,, =1.

tion of energy propagation is opposite the direction of
phase front propagation. This type of behavior has been
previously identified in circular waveguides with axial di-
electric rods [14] and in rectangular waveguides with rect-
angular dielectric rods [15], and has been treated generally
in {16]. Interestingly, the dispersion characteristics of the
rod mode are also independent of A/a. That is, for a
given kqa, Ba does not depend on the size of the guide
relative to the rod radius.

Each of the curves in Figs. 3 and 6 was generated on an
IBM PC microcomputer by solving either (18) or (19) and
(20) using 20 equally spaced raatched points and 20
harmonics. A measure of the sensitivity of the results to
the number of matching points is shown in Fig. 7. It is
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Fig. 8. Change in cutoff frequency from empty waveguide value for
dielectric rod placed off center in circular waveguide versus off-center
position, for €,; =10, €,, =1, b/a=10.

seen that as the rod radius is increased, it takes more
matching points (and expansion functions) to calculate the
cutoff frequency of the HE{f mode to within a desired
accuracy, while the EH{f mode is relatively insensitive to
the number of points chosen.

As a second example, Fig. 8 shows the change in cutoff
frequency which results when a dielectric rod is placed off
axis in a circular guide, as shown in Fig. 2(b). Again, the
subscript on the mode designation corresponds to the
empty waveguide TE or TM mode to which the modes
revert at zero rod radius. The superscript is used to indi-
cate whether the axial fields are even or odd about the x
axis. Because of the twofold symmetry, point matching is
required only in the upper half of the guide. Calculations
were done using 20 equally spaced points.

For a rod placed in the center of the circular guide, each
of the modal cutoff frequencies is lowered. As the rod is
shifted off axis, most of the modes split into two separate
cases, demonstrating either even or. odd symmetry. Those
modes which are azimuthally symmetric when the rod is
centered do not split. This is sensible, since the field
patterns of these modes are independent of the radial
direction along which the rod is to be moved.

It is interesting to see from Fig. 8 that the cutoff
frequency of the EHf, mode is highly perturbed as the rod
is moved off axis, while the EH{, mode is quite insensitive
to shifts in the rod position. This suggests that a cylindrical
cavity oscillating in the EH;, mode might be useful for
monitoring the dielectric constant of a rod placed off axis.
Fig. 9 shows the resonant frequency of a circular cylin-
drical cavity with an off-axis dielectric rod plotted against
the dielectric constant of the rod. It is seen that for
1<e ,1\10 the resonant frequency of the EHf;; mode
varies in a near linear fashion with €,;. The modes nearest
in resonant frequency to the EHf;; mode, including the
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EHY?,, mode, are nearly invariant with changes in ¢,;, and
provide benchmark frequencies.

V. COMPARISON TO EXPERIMENT

To judge the validity of the technique presented in this
paper, results are compared with measurements made by
Rzepecka [17] of the resonant frequency of a rectangular
cavity loaded by a cylindrical sheath containing liquids of
various permittivities. His cavity is constructed from a 10.2
in section of WR340 waveguide (3.4 inX1.7 in inner
dimensions) and is operated in the 103 mode TE to the
axis of the waveguide. The cylindrical dielectric sample is
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inserted through a hole in the center of the broad wall, and
extends across the waveguide, perpendicular to its axis.

For the purpose of analysis, the cavity can also be
viewed as oscillating in the 310 mode TM to the axis of the
rod, corresponding to a section of 10.2 inX 3.4 in wave-
guide operating in the TM,; mode at cutoff. The resonant
frequency does not depend on the length of the guide
because the transverse electric fields are identically zero at
cutoff (see (13) and (14)). ‘

Fig. 10 shows the TM;,, resonant frequency of the
cavity loaded with a dielectric rod of diameter 0.11 in
plotted versus rod permittivity, calculated by solving (19)
with ten matching points along the x axis and three points
along the y axis. Also shown are Rzepecka’s measure-
ments. With the theoretical curve scaled to account for the
presence of the insertion hole and the sample holder,
agreement is seen to be excellent.

VI

A technique for calculating the propagation characteris-
tics of dielectric-rod-loaded waveguides has been pre-
sented. The technique is numerically simple and comput-
ationally rapid. A typical point on a dispersion curve
calculated using 20 matching points takes 5 seconds on an
IBM PC with a math coprocessor. Numerical results have
been presented which demonstrate the usefulness of the
technique, and the validity of the technique has been
verified by comparison to measured data.

CONCLUSIONS

APPENDIX

rn(Tr) = anq)n(7r)+ Rn@)n(’rr)

g‘n(q-r) =Q4nq)n(7r)+Rn®n(Tr) (Al)
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